ANALYSIS OF STEEL TANKS IN CHILE SUBDUCTION EARTHQUAKES

Patricio Pineda Nalli G. Rodolfo Saragoni UNIVERSITY OF CHILE

January 11, 2017

16th. World Conference on Earthquake Engineering

GENERAL TOPICS

Non-Building Structures Observed Failures Seismic Activity Seismic Response Backward Seismic Analysis Seismic Horizontal Sliding of Self-Anchored Steel Tanks (Proposal) **Final Comments**

Main Aspects

Petroleum, Liquid Gas, Sulphuric Acid, Water Storage

Self-Anchored

Anchored

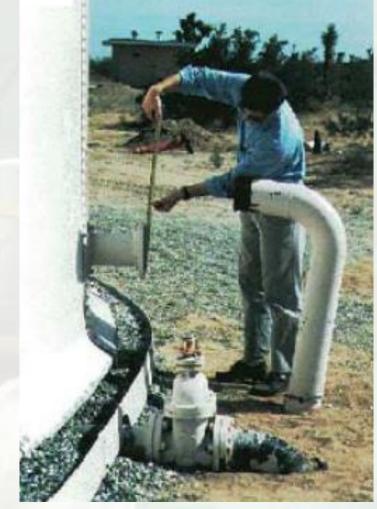
Very important in the seismic response

Continuity of Operation in Industry

Non-interruption of essential processes and services Prevent or minimize the standstill of operations Enable the inspection and repair of damaged elements

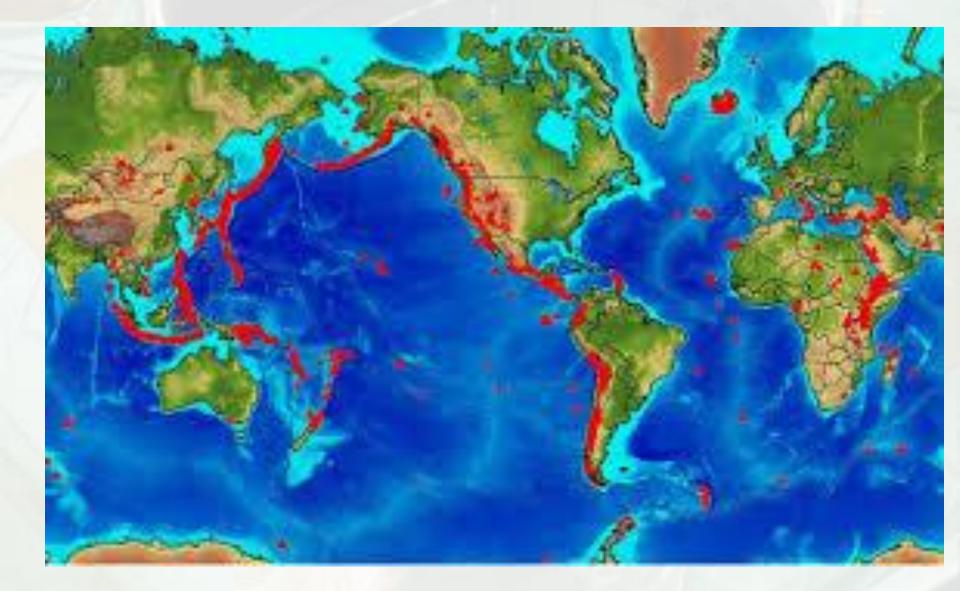
Observed Tanks Failures on Earthquakes

	Earthquake	Mag.	Principal Failures						
			RS	BS	WR	CB	RP	AB	HS
	Chile 1960 ⁽¹⁾	<mark>9.5</mark>		X		X	X		X
	Alaska 1964	9.2		Х			Х	Х	Х
	Armenia 1972	7.0	Х	Х		Х			
	Loma Prieta 1989	6.9	Х	Х	Х				Х
	Chile 1985 ⁽¹⁾	<mark>7.8</mark>		X					
	Hokkaido 1993	7.6		Χ					Х
	Northridge 1994	6.7	Х	Х		Х	Х	Х	Х
	Chile 2007 ⁽¹⁾	<mark>7.7</mark>		X					X
	Observed Failur	es (%)	38	100	13	38	38	25	75
	Chile 2010 ⁽²⁾	<mark>8.8</mark>	<mark>ND</mark>	ND	ND	ND	ND	ND	ND
Rupture of Shell Wall : RS			Rupture				: RP	(D !]	
Buckling Shell (Foot Elephant) : BS			Rupture of Anchorage Bolts : AB				(Pined		
		: WR : CB	Horizon	ital Slid	ing		: HS		(2016)
ranues in	Columns and Deams	. CD							

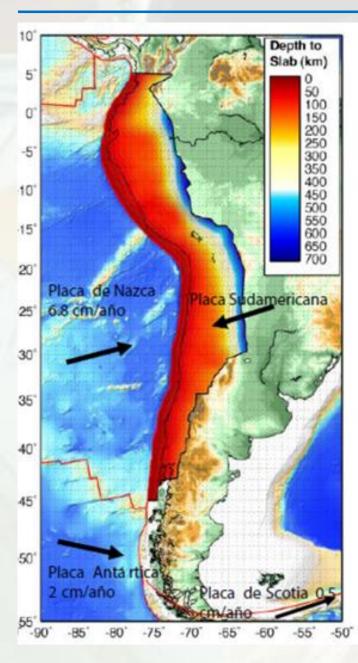

- (1) Self-Anchored. Damage
- (2) Anchored. No Damage

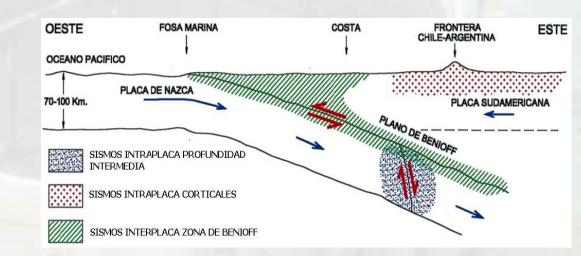
Design mainly with API Standard 650

Main Fails Observed on Earthquakes



Buckling Shell (BS)

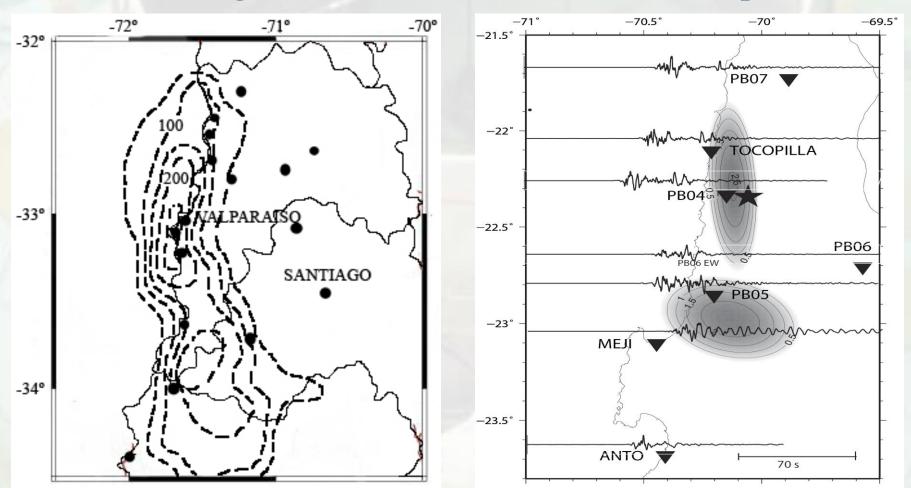



Horizontal Sliding (HS)

Circumpacific Seismicity

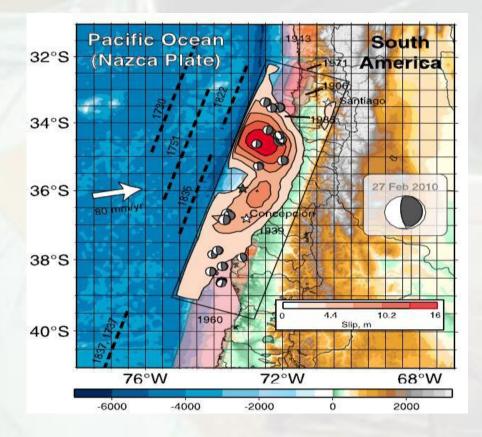
Subduction Plate Interaction

High seismicity

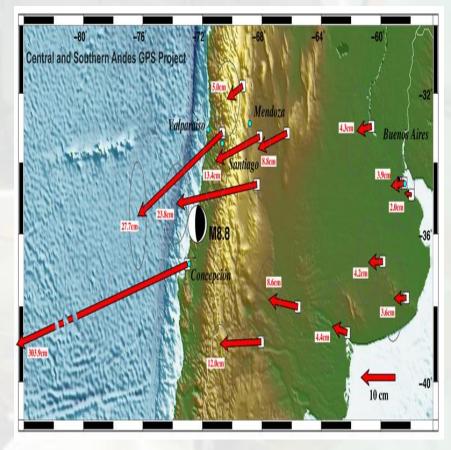

Large subduction interplate earthquakes

Off shore epicenters with large Tsunamis

Asperities in Northern of Chile


1985 - Algarrobo

2007 - Tocopilla



High levels of seismic energy at a few asperities on the subduction plate

February 27, 2010 (El Maule)

Asperities in Southern

GPS coseismic horizontal displacement (303.9 centimetres at the coast, ENAP Refinery)

Chronology of Backward Studies

John A. Blume 1963, after 1960 Chile earthquake Rinne 1967, after 1964 Alaska earthquake Cooper 1997, for Earthquakes from 1933 to 1995 Pineda & Arze L. – Undergraduate Thesis 2000 Pineda, Saragoni and Arze L. - STESSA 2012 Pineda & Saragoni - STESSA 2015 Pineda & Saragoni - 16WCEE 2017 Pineda & Saragoni - M.Sc. Thesis 2017 **Pineda & Saragoni - NCh2369 (Chilean Code) Upgrade** (2016-2017)

Seismic Response – Con Con 1985

Observed Tanks Failures

Tank	\mathbf{D}/\mathbf{H}_1	\mathbf{H}_{1}	\mathbf{H}_2	R _c (%)	Failure
T-326A	1.06	12.20	11.30	94.4	BSL
T-326B	1.06	12.20	11.30	92.6	BSL
T-418A	1.50	12.20	11.30	92.6	BSL
T-552 (1)	0.92	12.20	11.80	92.6	BSL
T-407A	1.12	12.20	11.60	92.6	BSL
T-320A	0.92	12.20	11.60	95.1	BSL
T-4001A	0.92	12.20	11.60	100	BSL
T-405A	1.50	12.20	11.60	95.1	BSL
T-420A	1.37	11.58	11.60	95.1	BSL
T-301A	1.56	9.75	9.20	95.1	BSL
T-422A	1.83	12.20	11.60	96.7	BSL
T-402	1.84	12.20	11.30	95.1	<mark>No</mark> Damage

Buckling Shell (BS)

Self – Anchored Designed with API 650

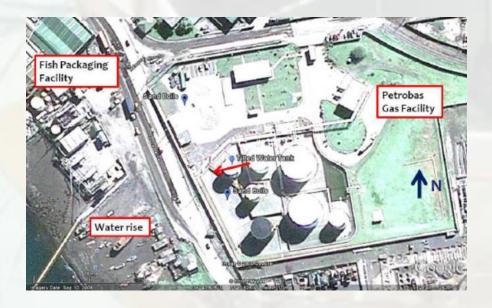
Seismic Response – Tocopilla 2007

Uplift

Horizontal Sliding (±100mm)

Requires Anchor Bolts

Seismic Response – Santiago 2010



Only collapse the self-anchored tanks

Rigid connections piping

Seismic Response – Port of San Vicente 2010

Tanks near epicenter No evidence of damage Tilted one degree Seismic directivity

Seismic Response – Bío Bío 2010

Evidence of Sloshing

Must be controlled: Height of Filling & Freeboard Models do not reflect the real behavior in earthquakes, there is no correlation between:

Repeated failures presented in large earthquakes

• API 650-E: "Application of this standard does not imply that damage to the tank and related components will not occur during seismic events"

Backward Seismic Analysis

2000

1500

1000

500

0

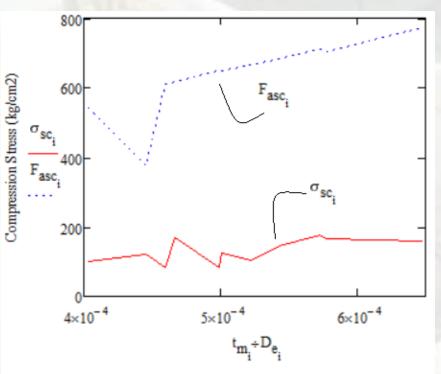
fend.,

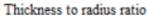
api

Sloshing (mm)

1985 earthquake Shell compression

Freeboard


end.


30

api.,

40

50

Differences between codes

20

D_e

Diameter Tank (m)

10

Underestimation with API650-E

Cases Studies in Subduction Zones

Earthquake	Location	Mag.	Quantity	Content	Failure
Chile 1985	Algarrobo	7.9	12	G, N, So, Fo,	BSL, U
				Sp, A, K	
Chile 2007	Tocopilla	7.7	1	Sa	BSU, HS
Chile 2010	El Maule	8.8	7	Sa, W, MT,	U, CL,
				G, D, T	
Alaska 1964	Anchorage	9.2	24	W, O, Tf,	CL, RD, CB, BSL, BSU, U,
					BL, HS
Alaska 1964	Nikiski	9.2	7	W	CL, BSL, RD, U
Alaska 1964	Seward	9.2	1	Fo	BSL, B

Content: (G)Gasoline, (N)Nafta, (So)Solvent, (Fo)Fuel Oil, (Sp)Slop, (A)Asphalt, (K)Kerosene, (Sa)Sulfuric acid, (W)Water, (MT)Metil ter butyl eter, (D)Diesel, (T)Tar (alquitran), (O)Oil, (Tf)Turbine Fuel

Failure: (BSL)Buckling Shell Lower (type "elephant foot"), (U)Undamaged, (BSU)Buckling Shell Upper, (HS)Horizontal Sliding, (CL)Collapse, (RD)Roof Damages, (CB)Columns and Beams damages, (BL)Bottom Lift, (B)Burning.

Backward Seismic Analysis (BSA)

Evaluation of seismic response in Chile (65 cases): 1960 – 1985 – 2007 – 2010

Extensive information on seismicity and damage records in Chile allows to develop Backward Seismic Analysis

Required records:

- Seismicity
- **Dimensions**
- Soil type
- Design codes
- Damages
- Fill height

Methodology:

- Evaluation of seismic demand
- Shell compression
 - **Freeboard (Sloshing)**
- Horizontal sliding
 - Spectra for design, from BSA

Horizontal Sliding in Self-Anchored Tanks

On coastal of subduction zones, in terms on magnitude: S[m] = -5.47 + 0.76M ; M ≥ 7.3 (Pineda & Saragoni) Results in meters

In the perpendicular direction to the coast or in the convergence of the subducted plate.

Behaviour observed in earthquakes:

Earthquake	Magnitude	Plate Fault	S (mm)
Alaska 1964	9.2	Subduction	1524
Tocopilla 2007	7.7	Subduction	70-80
Landers 1992	7.3	Cortical	80-100

Final Comments

- To observ real performance of Steel tanks is only posible with Backward Seismic Analysis
- In Chile there was no failure because most of the tanks were anchored
- Large sliding are due to ground coeseismic displacement measured by GPS in coastal áreas
- Coseismic sliding in perpendicular direction to the coast or convergence of the subducted plate
- Proposed formula to estimate horizontal sliding of self-anchored tanks

THANKS FOR YOUR KIND ATTENTION

patricio.pineda@ing.uchile.cl

ppinedan@gmail.com